

Striatal Phantom

Applications

Image quality evaluation
______Image registration quality assurance
______Quantification of striatal uptake
______SUV calculation and validation

Modalities

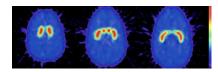

SPECT/PET

IMAGE QUALITY EVALUATION & ASSURANCE WITH QUANTIFICATION OF STRIATAL UPTAKE

The Striatal Phantom optimizes quantitative imaging in patients, using PET or SPECT. This phantom is based upon a standard RSD head with a calvarial cut to insert or remove the brain shell easily. The nasal cavity and maxillary sinuses are filled with foam with a mass density of 0.23 g/cc.

The brain shell has five compartments which can be filled separately: left and right nucleus caudate, left and right putamen, and the remainder of the brain. This allows different nucleus caudate to putamen ratios as well as different striatal to background ratios to be obtained; this also permits differences between left and right striatal activity to be examined. The volume of the brain shell is about 1,260 ml. The volumes of the nucleus caudate and putamen are 5.4 ml and 6.0 ml respectively.

<u>Fillable External Markers</u>: A set of fillable capsules is provided to serve as external markers. Capsules can be filled with a radioactive solution and attached to the external surface of the phantom. The phantom can then be imaged, using SPECT or PET modalities to compare image-registration techniques.

Quantification of striatal uptake is not straightforward because it depends on a number of factors including type of radionuclide used (Tc-99m, I-123 or F-18), imaging factors (such as collimator type, amount of scatter and attenuation), and image processing parameters (such as scatter and attenuation-correction techniques, type of reconstruction filter, slice thickness, region-of-interest size and its location).

In normal subjects, the putamen and head of the nucleus caudate are small structures with typical dimensions of 7-15 mm in the axial plane (that is comparable to the system resolution). Since partial volume effects are more important for objects with dimensions less than twice the system resolution, the selection of imaging and reconstruction parameters is critically important in calculating the striatal-to-occipital ratio used to measure the relative striatal uptake in the brain.

Specifications

Packing Size	Packing Weight		
36W x 36D x 36H cm	5 kg		
14W x 14D x 14H in	12 lb.		

Model Numbers

Model No.	Product Description				
RS-900	Head without Brain Shell				
RS-900T	Head with Transparent Brain Shell containing Striatum				
RS-901T	Transparent Brain Shell with Striatum				

Publication References: 1) Willowson K, Bailey D, Schembri G, Baldock C. CT-based quantitative SPECT for the radionuclide²⁰¹TI: experimental validation and a standardized uptake value for brain tumour patients. Cancer Imaging. 2012;12(1):31-40. DOI: https://doi.org/10.1102/1470-7330.2012.0005. 2) Koch W, Radau PE, Münzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging. 2006 Apr;33(4):495-502. DOI: https://doi.org/10.1007/s00259-005-0036-8. Epub 2006 Jan 25. PMID: 16435116.

RSD Materials

<u>Soft Tissues:</u> There are unlimited, small variations in density and absorption throughout the human body. Phantom soft tissue is closely controlled to have the average density of these tissues.

<u>Skeletons:</u> RSD skeletons are highly detailed polymer moldings which reproduce the shape, mass density and attenuation coefficients of cortical bone and spongiosa. RSD's proprietary moldings allow for continuous production, eliminate the restrictions of human skeleton bones (including limited availability, unethical collection of human bone specimen, variable size, and uncertain chemical composition), and avoid the loss of marrows in dried natural skeletons thereby making RSD skeletons superior to "real bone."

<u>Molds:</u> Molds for the RSD cortical bone and spongiosa were made from human skeletons consistent with the sizes of the soft tissue molds.

<u>ICRU 44:</u> RSD skeletons conform closely to the standards established by the International Commission on Radiation Units and Measurements (ICRU Report No. 44); mass density is reduced slightly to take into account a small decrease in calcium content for older patients.

LINEAR ATTENUATION DATA

- 1. Monte Carlo simulation was used to calculate linear attenuation coefficients as a function of beam.
- Monte Carlo results were validated with linear attenuation coefficients derived from Hounsfield Unit measurements at discreet energy levels.
- RSD Phantom material linear attenuation data was compared to NIST data using ICRU Report 44 compositions of human tissues.
- 4. NIST data was interpolated when necessary.

MATERIALS	DENSITY (g/cc)		
RSD Soft Tissue (Opaque)	1.08		
RSD Soft Tissue (Transparent)	1.10		
RSD Cortical Bone	1.83		
RSD Trabecular Bone	1.17		

RSD SOFT TISSUE					
Energy (MeV)	Mean (HU)	Calculated (M)	μ (ICRU 44)	% Difference	Ratio
00.08	60.30	0.1948	0.1932	0.0080	0.9921
00.10	52.88	0.1797	0.1795	0.0015	0.9985
00.12	57.10	0.1717	0.1709	0.0044	0.9956
00.14	52.95	0.1623	0.1624	0.0007	1.0007
00.20		0.1477	0.1439	0.0261	0.9746
00.30		0.1245	0.1246	0.0004	1.0004
00.60		0.0950	0.0941	0.0101	0.9900
00.80		0.0825	0.0826	0.0013	1.0013
01.00		0.0744	0.0743	0.0018	0.9982
02.00		0.0520	0.0519	0.0018	0.9982
03.00		0.0351	0.0357	0.0171	1.0174
06.00		0.0288	0.0291	0.0088	1.0088
08.00		0.0252	0.0255	0.0098	1.0099
10.00		0.0229	0.0232	0.0149	1.0151
15.00		0.0203	0.0203	0.0015	0.9985
20.00		0.0189	0.0189	0.0017	1.0017

RSD CORTICAL BONE					
Energy (MeV)	Mean (HU)	Calculated (M)	μ (ICRU 44)	% Difference	Ratio
00.08	1365	0.4345	0.4280	0.0151	0.9851
00.10	1048	0.3496	0.3562	0.0184	1.0188
00.12	0977	0.3211	0.3274	0.0191	1.0195
00.14	0902	0.2932	0.2986	0.0180	1.0184
00.20		0.2511	0.2513	0.0009	1.0009
00.30		0.2155	0.2137	0.0084	0.9916
00.60		0.1596	0.1598	0.0011	1.0011
00.80		0.1403	0.1402	0.0010	0.9990
01.00		0.1274	0.1261	0.0106	0.9895
02.00		0.0883	0.0885	0.0017	1.0017
03.00		0.0611	0.0625	0.0229	1.0235
06.00		0.0512	0.0525	0.0246	1.0253
08.00		0.0468	0.0474	0.0120	1.0121
10.00		0.0446	0.0444	0.0039	0.9962
15.00		0.0410	0.0409	0.0016	0.9984
20.00		0.0393	0.0397	0.0102	1.0103

RSD TRABECULAR BONE (SPONGIOSA)					
Energy (MeV)	Mean (HU)	Calculated (M)	μ (ICRU 44)	% Difference	Ratio
00.08	551	0.2849			
00.10	515	0.2586			
00.12	439	0.2337			
00.14	318	0.1541			